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A B S T R A C T

Winter drawdown (WD) is a common lake management tool for multiple purposes such as flood control, aquatic
vegetation reduction, and lake infrastructure maintenance. To minimize adverse impacts to a lake’s ecosystem,
regulatory agencies may provide managers with general guidelines for drawdown and refill timing, drawdown
magnitude, and outflow limitations. However, there is significant uncertainty associated with the potential
to meet management targets due to variability in lake characteristics and hydrometeorology of each lake’s
basin, making the use of modeling tools a necessity. In this context, we developed a hydrological modeling
framework for lake water level drawdown management (HMF-Lake) and evaluated it at 15 Massachusetts
lakes where WDs have been applied over multiple years for vegetation control. HMF-Lake is based on the
daily lake water balance, with inflows simulated by a lumped rainfall-runoff model (Cemaneige-GR4J) and
outflow rate calculated by a modified Target Storage and Release Based Method (TSRB). The model showed
a satisfactory performance of simulating historical water levels (0.53 ≤ NSE ≤ 0.86), however, uncertainties
from meteorological inputs and TSRB determined lake outflow rate affected the result accuracy. To account
for these uncertainties, the model was executed stochastically to assess the ability of study lakes to follow the
Massachusetts’ general WD guidelines: drawdown by Dec 1 and fully refilled by Apr 1. By using the stochastic
HMF-Lake, the probabilities of each lake to reach the drawdown level by Dec 1 were calculated for different
drawdown magnitudes (1–6 ft). The probability results suggest it was generally less possible for most of study
lakes to achieve a drawdown of 3 ft or more by Dec 1. Moreover, we employed the stochastic model to derive
the annual latest refill starting dates that ensure a 95 % probability of reaching the normal water level by
Apr 1. We found starting a refill in March for drawdowns up to 6 ft was feasible for most of study lakes.
These results provide lake managers with a quantitative understanding of the lake’s ability to follow the state
guidelines. The model may be used to systematically evaluate current WD management strategies at state or
regional scales and support adaptive WD management under changing climates.
1. Introduction

Fluctuations in lake water levels are controlled not only by natural
processes such as precipitation and evaporation, but also by man-
agement practices that aim to provide human (e.g. recreation, water
supply, flood protection) and ecosystem (e.g. minimum downstream
flows) services (Gronewold and Rood, 2019). Winter drawdown (WD) is
one of these management strategies, employed in temperate and boreal
regions, that involves lowering water levels during the winter and refill-
ing in the spring (Carmignani et al., 2021). The application of WDs can
have multiple purposes for different years and even for different lakes,
such as hydroelectric power generation (Mjelde et al., 2013), flood
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control (Schenk and Bragg, 2021), infrastructure maintenance (Madsen
et al., 2017), and aquatic vegetation reduction (Carmignani and Roy,
2017). Compared with other aquatic vegetation reduction approaches
such as using chemical herbicide, because WDs are simpler to im-
plement and have lower costs, it has become a popular management
strategy in many lakes (Helfrich et al., 2009).

Despite the benefits of WDs, there are potential negative effects
on lake ecosystems. Within the lake, WDs can alter the physical habi-
tat and macrophyte assemblages (Carmignani and Roy, 2021), affect-
ing lake biota including macroinvertebrates, freshwater mussels, and
fishes (Carmignani, 2020). Decrease in water storage might cause the
vailable online 4 September 2023
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potential loss of habitats during winter, affecting fish species interac-
tions (Sammons and Bettoli, 2000; Yamanaka, 2013). Moreover, poten-
tial spring refill delays can disturb spawning activities of fish because
of insufficient lake storage (Carmignani and Roy, 2017; McDowell,
2012). Finally, downstream flow regimes are altered by increasing
flows during winter drawdown and reducing flows during spring refill,
adversely impacting downstream ecosystems (Hamilton et al., 2022;
Schenk and Bragg, 2021).

There are several guidelines for WD management that aim to min-
imize ecological impacts (New Hampshire Department of Environ-
mental Services, 2022; Muskingum Watershed Conservancy District,
2022). For example, Massachusetts Division of Fisheries and Wildlife
(MassWildlife) provides a set of guidelines related to the drawdown
magnitude (<3 ft; if deeper, a permit is needed), timing (drawdown
must be initiated after November 1st and completed before December
1, and refill must be achieved before April 1) and outflow restrictions
(<4 cfsm, cubic feet per square mile of its contributing area, during
recession and >0.5 cfsm during refilling) or water level recession rates
<3 inch/day) (Mattson and Wagner, 2004). In cases in several states,
uch as in Massachusetts (MA), New Hampshire (NH) (New Hamp-
hire Department of Environmental Services, 2022), Ohio (OH) (Musk-
ngum Watershed Conservancy District, 2022), Wisconsin (WI) (Minong
lowage Association, 2021), the latest refill completion date guidance
ims to minimize damages to spring spawning activities. Nonethe-
ess, the optimal refill start date given a completion date constraint
e.g., April 1 for MA) can be highly site- and year-specific depending on
he watershed yield and lake capacity, and affected by uncertainty in
limatic factors (rainfall, ice formation, etc.). Therefore, it can become
ifficult for lake managers to develop drawdown schedules or evaluate

‘what-if’’ scenarios (e.g., related to climate change) (Carmignani et al.,
021).

A hydrological model that can simulate the lake water balance and
anagement operations could address this knowledge gap and poten-

ially aid resource managers (Carmignani et al., 2021; Magee et al.,
019). Many existing hydrological models represent reservoir/lake pro-
esses and can support customization of operation rules for water
esource management, such as Soil and Water Assessment Tool plus
SWAT+) (Wu et al., 2020), Variable Infiltration Capacity (VIC) (Dang
t al., 2020), Distributed Hydrology Soil Vegetation Model (DHSVM)
Zhao et al., 2016). Yassin et al. (2019) summarized current reservoir
peration models, which can be divided into three categories: inflow-
nd-demand based methods, neural network-based methods and tar-
et storage-and-release-based methods. The inflow-and-demand based
ethods use empirical equations to determine reservoir release from

nflows and downstream demands (irrigation, water supply, hydroelec-
ric, etc.) (Allawi et al., 2019; Biemans et al., 2011). Neural network-
ased methods are powerful tools that have mostly been used to
orecast reservoir water levels by using inflows and weather variables
s input to infer operation rules (Yang et al., 2019; Zhang et al., 2018).
ne of the major limitations of neural networks for assessing different
D schedules is their ‘‘black box’’ nature (Oyebode and Stretch, 2019)

hat makes it difficult to map actual management strategies to network
arameters. Target storage-and-release-based methods (TSRB) are de-
igned to simulate dam operations by dynamically altering the outflow
n order to drawdown/refill the lake to the target storage within a
iven period. For example, SWAT+ calculates the release rate in every

model time step from the difference between current storage and target
storage, and a user-specified adjustment coefficient (Arnold et al.,
1998). TSRB methods appear to be the most promising approach to
model WDs, because the WD storage could be considered as the target
storage during the winter. However, most studies that use this method
target multi-purpose reservoirs over larger scales (Dang et al., 2020;
Yassin et al., 2019; Zhao et al., 2016), whereas lakes that implement
WDs tend to be smaller in size and single-purpose. Although these types
2

of models can be modified to assess WDs, their formulations are generic
and can be overtly complicated as they need to account for multi-
purpose reservoirs. More importantly though, current models attempt
to replicate management strategies by calibrating a set of parameters
to observations. However, WD strategies vary in time and are often
influenced by factors (e.g., political) that are not captured in current
models.

Our study aims to address the issues of complexity and uncer-
tainty in WD lake management by developing a hydrological modeling
framework for lake water level drawdown management (HMF-Lake).
To demonstrate the application of HMF-Lake, we selected 15 gauged
WD lakes in MA, USA to build, calibrate, and validate our model against
in-situ observations. In addition, we employed the HMF-Lake model to
assess the feasibility of these lakes to conduct WDs based on the MA
general WD guidelines. Specifically, we assessed (1) the probability of
completing drawdown by December 1 given a November 1 start and
different drawdown magnitudes, and (2) the timing of refill start to
achieve full pool levels by April 1 with different drawdown magnitudes.
As such, we demonstrated how a modeling framework such as HMF-
Lake can provide actionable information to lake managers. Finally, we
discuss other possible applications of this modeling framework along
with potential improvements that could lead to better WD management
in practice.

2. Methods

2.1. Data acquisition and pre-processing

We developed and evaluated a hydrological model using in-situ
measurements (2014 to 2018) of water levels at 15 recreational lakes in
Massachusetts (Fig. 1 and Table 1) that conduct WDs (Carmignani et al.,
2021). Although data from 18 lakes were available from Carmignani
et al. (2021), three WD lakes (Lake Wyman, Silver and Cranberry
Meadow) were eliminated because of missing data that would mis-
lead the identification of the WD period (See Fig S1). As our model-
ing framework operates at a daily time step and requires daily wa-
ter level observations, we resampled the raw bi-hourly water levels
to daily by calculating the mean value. In addition to water levels,
lake bathymetry measurements conducted during full pool conditions
during the summer available.

Weather data were obtained from the Daymet dataset, which com-
prises of daily minimum temperature, maximum temperature, precip-
itation, shortwave radiation, vapor pressure, snow water equivalent
on a 1 km grid (Thornton et al., 2020). The raw data from Daymet
are gridded, therefore the area-weighted spatial averages were calcu-
lated over the watershed of each WD lake from 1 January 2010 to
31 December 2020 using the daymetpy Python package (https://
github.com/bluegreen-labs/daymetpy). Since the model developed in
Section 2.3 requires potential evapotranspiration as input, we applied
a temperature-based method to estimate it for each basin (Oudin et al.,
2005). The calculated basin mean average annual evaporation of study
lakes are presented in Table 1.

In order to simulate lake inflows, the model also requires the
drainage basin characteristics (drainage area, land cover, etc.) of each
WD lake. In this study, we used Streamstats (Ries III et al., 2008), a
web-GIS application developed by the U.S. Geological Survey (USGS)
for streamflow analysis, to delineate the drainage watershed at the
outlets of the WD lakes and acquire the statistics of the basin character-
istics (See Table 1). In addition to watershed delineation, we extracted
drainage area, average annual precipitation, mean basin elevation,
percent of basin that is sand and gravel deposits, percent of basin
that is wetlands, percent of basin that is open water, and average
maximum monthly temperature for each WD lake drainage basin to
aid model calibration via regionalization (described in more detail in
Section 2.3.1). The data used in this study including data source and

processing methods are summarized in Table S1.

https://github.com/bluegreen-labs/daymetpy
https://github.com/bluegreen-labs/daymetpy
https://github.com/bluegreen-labs/daymetpy
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Fig. 1. Location of the 15 study lakes and associated drainage basins in Massachusetts, USA. (See Table 1 for details about each lake).
Table 1
Lake morphometric features and the basin characteristics for 15 study lakes in Massachusetts, USA. AREA = Lake Area (km2), VOL = Full lake volume (106 m3, measured from
bathymetry), DRNAREA = Drainage area (km2), RATIO = drainage area/lake area, BLSDEM10M = Mean basin slope computed from 10 m DEM (Percent), PRECPRIS00 = Basin
average mean annual precipitation for 1971 to 2000 from the PRISM dataset (mm), ETDAYMET = Basin average mean annual evaporation for 2010 to 2020 from Daymet dataset
calculated by the method from Oudin et al. (2005) (mm), HSIMGAUGE = the USGS gauge number where the drainage basin is hydrological similar to the lake watershed. (See
Fig. 1 for lakes included in the table).

Lake AREA VOL DRNAREA BSLDEM10M PRECPRIS00 ETDAYMET RATIO HSIMGAUGE
Unit km2 106 m3 km2 % mm mm

Buel 0.83 5.10 14.19 12.25 1198.88 619.04 17.1 01175670
Brookhaven 0.14 0.20 3.60 9.58 1226.82 618.61 25.70 01181000
Boon 0.73 2.17 5.11 4.27 1198.88 617.94 7.00 01111500
Watatic 0.56 1.65 15.68 9.96 1239.52 616.69 28.00 01097300
Greenwater 0.38 2.91 3.91 17.72 1330.96 618.46 10.30 01174565
Wickaboag 1.30 2.79 44.85 8.51 1226.82 618.71 34.50 01198000
Richmond 0.95 3.81 20.43 12.01 1231.90 617.88 21.50 01082000
Wyola 0.50 1.84 17.60 8.13 1270.00 617.50 35.20 01174565
Hamilton 1.68 6.17 46.54 10.97 1272.54 619.46 27.70 01095220
Ashmere 1.14 3.32 11.51 8.13 1318.26 617.81 10.10 01174565
Stockbridge 1.60 14.19 29.76 12.12 1203.96 618.30 18.60 01174565
Onota 2.66 19.18 27.40 13.69 1214.12 617.62 10.30 01198000
Goose 1.30 9.06 11.05 12.35 1280.16 618.54 8.50 01181000
Garfield 1.11 4.35 10.32 11.44 1224.28 618.91 9.30 01175670
Otis 4.21 27.96 41.68 6.26 1399.54 619.05 9.90 01176000
2.2. Massachusetts winter drawdown guidelines

As winter drawdowns are frequently applied in Massachusetts reser-
voirs, lakes, and ponds for aquatic vegetation control, MassWildlife
provides general guidelines for lake managers. In these guidelines, a
proposed WD must achieve the following performance standards: (1)
For lakes with a proposed WD of more than 3 ft, a site-specific review
by the Division of Fisheries and Wildlife must be conducted before the
WD. (2) Drawdowns must be initiated after Nov 1 as the water level
reduction in warm Fall seasons might result in potential fish kills due
to the increasing oxygen depletion particularly in shallow and heavily
vegetated lakes. (3) Water levels must reach the target WD value before
Dec 1 in order to provide sufficient time for aquatic animals to relocate
habitats before the lake is fully iced. (4) The maximum outflow during
recession must not exceed 4 cfsm (cubic feet per second per squire mile
of drainage area). Unexpected high release might cause downstream
flooding and pose dangers to the stream ecosystem (Ligon et al., 1995).
(5) Refills must be completed before April 1, as late spring refill would
be harmful to the fish recruitment due to the habitat loss in littoral
zones (Carmignani and Roy, 2017). (6) Outflow must be maintained
3

to at least 0.5 cfsm while the lake is refilling to provide sufficient
in-stream flow.

Our objective here is to evaluate the ability of the study lakes to
follow these guidelines. Specifically, we define that ability in terms
of the probability of achieving the end date requirements (3) and (5)
while the rest of the performance standards (1), (2), (4) and (6) are met
(The numbers refer to the 6 performance standards in Massachusetts
WD guidelines which are explained in the paragraph above). The refill
starting date and the drawdown magnitude (the distance between the
normal level and the designed drawdown level) are not specified in
the guidelines. As the primary purpose of WDs in the study lakes
was aquatic vegetation control, the larger area of exposure (larger
drawdown magnitude) and longer winter drawdown duration (later
refill starting dates) would be preferable in terms of vegetation removal
efficiency (Siver et al., 1986). However, selecting a larger drawdown
magnitude and later refill starting date might preclude the lake of
achieving requirements (3) and (5). Therefore, a numerical tool could
help optimize the possible largest drawdown magnitude and the latest
refill date of a WD lake within the constraints of the MA guideline
requirements.
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Fig. 2. Flow diagram of the hydrological modeling framework for drawdown lake management (HMF-Lake). 𝑉𝑡 is the storage at the current time step 𝑡. 𝐼𝑡 is the lake inflow,
which is simulated by the Cemaneige-GR4J with inputs of rainfall (𝑃𝑡) and evaporation (𝐸𝑡). 𝑄𝑡 os tje lake outflow, which is determined by the lake operation model. V–A–H is
the statistical relationship between the lake storage, area (𝐴) and water level (𝐻).
2.3. Hydrological modeling framework development

We started building the hydrological modeling framework for lake
water level management (HMF-Lake) from a simple water balance
equation (Eq. (1)):
𝑉𝑡+1 − 𝑉𝑡

𝛥𝑡
= 𝐼𝑡 −𝑄𝑡 + 𝐴𝑡(𝑃𝑡 − 𝐸𝑡) (1)

where 𝑉𝑡 (m3), 𝐴𝑡 (m2) are the storage, water surface area on day 𝑡;
𝑃𝑡 (mm∕d) and 𝐸𝑡 (mm∕d) are the direct precipitation and evapotran-
spiration, obtained from the Daymet; 𝐼𝑡 (m3∕d) is the lake inflow; 𝑄𝑡
(m3∕d) is the lake outflow. 𝑉𝑡, 𝐴𝑡, 𝐻𝑡 (water level at day 𝑡) can be
calculated from each other by using the V–A–H relationship derived
from the measured lake bathymetry. In particular, the V–A and A–H
relationships were obtained by fitting the polynomial functions 𝑉 =
𝑎𝐴𝑏 and 𝐴 = 𝑐𝐻𝑑 (Khazaei et al., 2022) to the volume, area and
height data from bathymetric measurements. In order for HMF-Lake to
simulate lake drawdown, we needed to estimate inflows 𝐼𝑡 as a function
of weather conditions and mathematically represent drawdown opera-
tions. For the latter we adapted a general TSRB method (Section 2.3.2)
while a rainfall-runoff model was employed to simulate the former
(Section 2.3.1) (see Fig. 2).

2.3.1. Lake inflow generation: Rainfall-runoff model
A daily lumped rainfall-runoff hydrological model, Cemaneige-

GR4J (Valéry, 2010), was used to estimate lake inflows within the
developed framework. The Cemaneige-GR4J has daily precipitation,
potential evapotranspiration data as inputs and six parameters that
describe basin characteristics to simulate runoff at the basin outlet.
Although lumped hydrological models such as the Cemaneige-GR4J
were designed to simulate streamflow at the basin outlet, they can also
be applied to model lake inflow by assuming the inflow location as the
outlet of its drainage basin (Huang et al., 2018; Gaborit et al., 2017;
Ogilvie et al., 2018).

Building a rainfall-runoff model for lake inflows requires historical
in-situ observations, which are mostly unavailable since most lakes are
gauged for measurements of water levels and outflows (Hamilton et al.,
2022; Schenk and Bragg, 2021). In order to overcome the limitation of
lacking in-situ inflow observations, we used a scheme for transferring
calibrated model parameters from other basins based on hydrological
similarity (Wagener et al., 2007). Hydrological similarity is derived
from physiographic characteristics between basins, such as land cover
4

or soil properties, and ideally result in a similar rainfall-runoff rela-
tionship. This parameter transfer strategy has been extensively used
in streamflow prediction in ungauged basins (Cantoni et al., 2022;
Arsenault et al., 2019). Du et al. (2020) reported that regionaliza-
tion method in streamflow simulation can reach 80% performance of
the local calibration. Furthermore, the National Water Model (NWA)
developed by the National Center for Atmospheric Research (NCAR)
which aims to simulate and forecast real time water components such
as streamflow discharge across the entire US also adopted such hy-
drologically similarity strategy to regionalize parameters (Heldmyer
et al., 2022). Numerous methods have been proposed to identify hy-
drologically similar watersheds, such as the nearest neighbor (Patil and
Stieglitz, 2015), k-means clustering (Kratzert et al., 2019), or neural
network based parameter learning (Feng et al., 2022).

In this study, we applied the Massachusetts Sustainable-Yield Esti-
mator (MA-SYE) (Granato and Levin, 2018), a software developed by
the USGS for assessment of sustainable water use at ungauged sites in
Massachusetts, US, to find hydrologically similar watersheds for each
of our study lake basins. The MA-SYE returns a gauge number from the
National Water Information System (NWIS) network based on a number
of features including drainage area, average annual precipitation, mean
basin elevation, percent of basin that is sand and gravel deposits,
percent of basin that is wetlands, percent of basin that is open water,
average maximum monthly temperature. The hydrologically similar
basins’ gauge numbers for the 15 WD lakes were obtained by using
the MA-SYE and are presented in Table 1. We used the Python package
RRMPG https://github.com/kratzert/RRMPG to set up and calibrate the
Cemaneige-GR4J model against streamflow measurements from these
gauges in the hydrologically similar watersheds. The calibrated model
parameters were then transferred to the Cemaneige-GR4J model in the
corresponding WD lake basin to simulate lake inflows.

2.3.2. Lake outflow simulation
Each type of lake outflow structure has its own governing equation

to calculate releases, parameterized based on its hydraulic character-
istics. For example, the outflow at an overtop spillway dam can be
calculated by: 𝑄𝑡 = 𝐶𝐿𝐻1.5, where 𝐶 is the discharge coefficient, 𝐿
is the spillway gate length, and 𝐻 is the hydraulic head above the
spillway. This equation has been commonly applied and incorporated in
many existing hydrological models (Klipsch and Evans, 2006; Hughes
et al., 2021). Nevertheless, applying this method to a large number
of lakes is impractical as dam information is generally unavailable.
Consequently, a general TSRB which can emulate WD release without

https://github.com/kratzert/RRMPG
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specific dam information is needed. We started by adapting a simple
TSRB equation from SWAT model (Wu et al., 2020):

𝑄𝑡 =

{ (𝑉𝑡−𝑉target)
𝑎𝛥𝑡 , 𝑉𝑡 > 𝑉target

0, 𝑉𝑡 ≤ 𝑉target
(2)

here 𝑄𝑡 is the outflow, 𝑉𝑡 is storage, 𝑉target is the target storage,
𝑡 is the time step (In this study, 𝛥𝑡 = 1 day), 𝑎 is the number of
equired time steps (days) for the lake to reach target storage. This
quation simulates drawdowns/refills by setting the target storage as
he winter drawdown storage and the normal pool storage, respectively.
he outflow rate during spring refills could be arbitrarily set to zero but
hat is inappropriate in practice due to downstream flow requirements.
oreover, Eq. (2) does not explicitly include the inflow term making it

ifficult to address requirements such as the one in the MA guidelines
bout lake outflow and inflow being equal when the target drawdown
evel has been achieved. In order to address these issues, we further
odified Eq. (2) for winter drawdown lakes to:

𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝑉𝑡 − 𝑉target)
𝑎𝛥𝑡

+ 𝐼𝑡, 𝑄𝑚𝑖𝑛 < 𝑄𝑡 < 𝑄𝑚𝑎𝑥

𝑄𝑚𝑖𝑛, 𝑄𝑡 ≤ 𝑄𝑚𝑖𝑛

𝑄𝑚𝑎𝑥, 𝑄𝑡 ≥ 𝑄𝑚𝑎𝑥

(3)

here 𝐼𝑡 is the inflow at time 𝑡, 𝑄𝑚𝑖𝑛 and 𝑄𝑚𝑎𝑥 are the minimum
and maximum allowed outflows. This equation determines the daily
outflow rate by reducing/increasing volume per day to inflow resulting
in a positive (drawdown) or negative (refill) change in water stor-
age. Minimum and maximum outflow, 𝑄𝑚𝑖𝑛 and 𝑄𝑚𝑎𝑥, are embedded
in Eq. (3) in order to satisfy dam capacity constraints or potential
downstream flow requirements. We separate the entire WD to 4 phases
according to Carmignani et al. (2021): Recession, Stable, Refill, Non-
drawdown. The 𝑉target of the Recession and Stable phases was set to the
winter drawdown storage: 𝑉drawdown, and the Refill and Non-drawdown
seasons had the normal pool volume: 𝑉normal as the 𝑉target. In order to
increase flexibility in the model, we assigned the coefficient 𝑎 (number
of days to reach target storage) as separate for each phase. Similar
to Eq. (2), the 𝑉target was considered as the lower bound, and the
outflow rate was determined to maintain the storage above 𝑉target. As
the time to complete each phase is unknown a priori and there are
outflow constraints, there is a possibility that the Recession or Stable
phases will never complete (depending on how inflows compare to
minimum required outflow). Therefore, we implemented a dynamic
residual volume factor that ensures the completion of each drawdown
phase and subsequent transition. This factor has the form 𝑉target =
𝑉drawdown − 𝑓 (𝑉normal − 𝑉drawdown) with 𝑓 being a coefficient that is
region-dependent but we found that for the study area lakes a value
of 0.05 is a reasonable estimate.

The final equation for the outflow rate in all 4 phases is then

𝑄 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑚𝑖𝑛
(

𝑄𝑚𝑎𝑥, 𝑚𝑎𝑥
[

𝑄𝑚𝑖𝑛, 𝐼𝑡

+
𝑉𝑡 − 𝑉drawdown − 0.05(𝑉normal − 𝑉drawdown)

𝛼𝛥𝑡

])

𝑇1 < 𝑡 < 𝑇2, Recession

𝑚𝑖𝑛
(

𝑄𝑚𝑎𝑥, 𝑚𝑎𝑥
[

𝑄𝑚𝑖𝑛, 𝐼𝑡

+
𝑉𝑡 − 𝑉drawdown − 0.05(𝑉normal − 𝑉drawdown)

𝛽𝛥𝑡

])

𝑇2 < 𝑡 < 𝑇3, Stable

𝑚𝑖𝑛
(

𝑄𝑚𝑎𝑥, 𝑚𝑎𝑥
[

𝑄𝑚𝑖𝑛, 𝐼𝑡 +
𝑉𝑡 − 𝑉normal

𝛾𝛥𝑡

])

𝑇3 < 𝑡 < 𝑇4, Refill

𝑚𝑖𝑛
(

𝑄𝑚𝑎𝑥, 𝑚𝑎𝑥
[

𝑄𝑚𝑖𝑛, 𝐼𝑡 +
𝑉𝑡 − 𝑉normal

𝜃𝛥𝑡

])

𝑇4 < 𝑡 < 𝑇1, Non-Drawdown

where 𝛼, 𝛽, 𝛾 and 𝜃 were different form of the 𝑎 in each phase. 𝑇1 and
3 are drawdown and refill initiation timings, which are given by users.
2 and 𝑇4 are the drawdown and refill completion timings, which are
etermined when 𝑉 ≤ 𝑉 and 𝑉 ≥ 𝑉 .
5

𝑡 drawdown 𝑡 normal d
2.4. Historical winter drawdowns simulation

In order to demonstrate the applicability of HMF-Lake on simulating
winter drawdowns, we assessed how well it could reproduce historical
water levels. Since the dam/gate operation records were not available,
the winter drawdown timing and magnitude were inferred from the
hydrographs (see Carmignani et al. (2021) for details on the method-
ology). Other than timing and magnitude, other parameters that are
required in HMF-Lake were unknown in the context of these historical
simulations including 𝑄𝑚𝑖𝑛 and 𝑄𝑚𝑎𝑥. Therefore, we calibrated HMF-
Lake to obtain the optimal combinations of 𝑄𝑚𝑖𝑛, 𝑄𝑚𝑎𝑥, 𝑡𝛼 , 𝑡𝛽 , 𝑡𝛾 and
𝑡𝜃 using the historical in-situ water level observations. The range of
plausible values for 𝑄𝑚𝑖𝑛, 𝑄𝑚𝑎𝑥 were [1%, 50%] and (50%, 99%] of
the inflows. For corresponding ranges for 𝛼 and 𝛽 were [1, Recession
duration days], and [1, Refill duration days] for 𝛾 and 𝜃. A differential
evolution algorithm (Virtanen et al., 2020) was employed to optimize
these model parameters. The KGE (Kling–Gupta efficiency) (Schaefli
and Gupta, 2007) and NSE (Nash–Sutcliffe efficiency) (Nash and Sut-
cliffe, 1970) were selected as the metrics for evaluating the model’s
performance.

2.5. Evaluation of the ability to meet the MA winter drawdown guidelines

After the historical winter drawdowns simulation, HMF-Lake was
applied to assess the ability of each lake to achieve the MA winter
drawdown guidelines. The ability can be reflected by the probabil-
ity of the lake to achieve requirements (3) and (5) while the rest
of the performance standards (1), (2), (4) and (6) were met (The
performance standards were explained in Section 2.2). We selected
10/01/2015–04/01/2018, which includes 3 years of winter drawdowns
in the simulation time period of all study lakes. The drawdown starting
date was set as November 1, which is the earliest drawdown date
suggested in the guidelines. The maximum outflow in the recession
phase was 4 cfsm, and the minimum outflow in the refill phase was 0.5
cfsm. The outflow limitations in other phases were set as the calibrated
values in the historical drawdown simulation (Section 2.4). In this
simulation, there are three major uncertainties which would affect the
simulated results: (1) potential errors in weather inputs; (2) unknown
refill starting date and drawdown magnitude; and (3) unknown daily
release rates. In order to account for these uncertainties we executed
the model stochastically.

For the meteorological uncertainty, we acquired 20 years (2000–
2020) daily precipitation, maximum and minimum air temperature
at regional weather stations where study lakes were closest to from
the Global Historical Climatology Network daily (GHCND) dataset,
and calculated the residual between the Daymet data at the same
location. The closest GHCND stations study lakes were listed in Table
S2. We then fit a Laplace probability distribution to the residual, 𝜖, for
ach meteorological variable and assumed that the distribution is the
ame across the study lakes (Empirical and fitted distributions for each
HCND station were presented in Fig S3). In every time step of the
MF-Lake simulation, the 𝜖 will be sampled from the fitted Laplace
DF and added to the Daymet weather estimate. The uncertainty in
efill timing and drawdown magnitude was accounted for by creating
n ensemble of 540 WD plans that consisted of 6 different drawdown
agnitudes (1–6 ft) and 90 refill starting dates (Jan 1 to Mar 30).

n terms of the daily release rate, the coefficients 𝛼, 𝛽, 𝛾 and 𝜃 in
ection 2.3.2 are generally not fixed for each phase. As the release rate
lso depends on the inflow, the time to phase completion is not known a
riori. For example, the guidelines require the lake to reach drawdown
evels in 30 days (November 1 to December 1) but drawdown might be
omplete on any date between November 1 to December 1 (1 ≤ 𝛼 ≤ 30).
hus, on each time step 𝑡 during [Nov 1, Dec 1], the release rate is
etermined to reach the drawdown level on any date by December
, which means 𝛼𝑡 = 𝑈 [1, 𝐷𝑒𝑐1 − 𝑡] (we assumed it is uniformly

istributed). Similarly, 𝛾𝑡 on each time step in the Refill phase can also
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be any value from 1 to 𝐴𝑝𝑟1 − 𝑡, which means 𝛾𝑡 = 𝑈 [1, 𝐴𝑝𝑟1 − 𝑡]. To
account for the uncertainty in the release rate we further enhanced the
540 WD plans in a Monte Carlo experiment performing a simulation
for each plan for 1000 sets of coefficient values. Consequently, there
were 540 × 1000 water level time series for each lake and their ability
to achieve the Dec 1 drawdown was calculated by 𝑃 = 𝑁

1000 , where
is the number of simulations whereby the target drawdown level

as reached by Dec 1. The ability for a lake to comply with the refill
equirement was quantified by the latest refill starting date for which
he lake has over 95% probability to achieve full refill by April 1.

. Results

.1. Lake inflows

Since the in-situ lake inflow observations were not available for
tudy lakes, the lake inflow model (Cemaneige-GR4J) was parameter-
zed by calibrating against the streamflow observations of hydrolog-
cally similar watershed. According to the simulated flow at gauge
1181000 showed in Fig S4, the locally calibrated model, which di-
ectly calibrated against the streamflow observations at 01181000, had
NSE of 0.657 and a KGE of 0.746. Meanwhile, the KGE and NSE of the
arameter transferred model, which is calibrated by using the records
t 01198000 (the hydrological similar station of 01181000), were
.539 and 0.497, the performance of which was slightly lower than
he locally calibrated model but still remained satisfactory. This fur-
her demonstrated that transferring parameters from a hydrologically
imilar watershed is applicable for streamflow simulation in ungauged
asins. Nine USGS gauges were identified to be hydrologically similar
o the study lakes by the MA-SYE (See Table S3). Among these gauges,
he Cemaneige-GR4J showed a satisfactory performance of streamflow
imulation, where 0.63 ≤ KGE ≤ 0.86 and 0.30 ≤ NSE ≤ 0.80 during
alidation period (See Table S3).

The calibrated model parameters from these gauges were used to
imulate daily inflows to the study lakes between 2000 and 2020. The
imulated inflows were summarized with boxplots (see Fig. 3). Lake
tis had the highest high flow (75 percentile = 46.41 cfs), whereas
ake Hamilton had the largest overall inflow magnitude among the
tudy lakes (median = 27.15 cfs). Lake Brookhaven had the lowest
nflow among the study lakes, with the lowest values for extreme flow
75th percentile = 3.01 cfs), median flow (1.88 cfs), and low flow (25th
ercentile = 0.83 cfs). Regarding inflow variability, Lake Otis had the
ighest standard deviation of 63.82 cfs, which indicates that it had the
ost variable inflow among the study lakes. In contrast, the standard
eviation of the Lake Brookhaven inflow is the lowest: 2.7 cfs, which
eans the inflow to Lake Brookhaven is less variable comparing with

ther study lakes.

.2. Historical winter drawdown simulations

The overall performance of simulated water levels comparing with
n-situ observations was satisfactory, where the KGE ranged from 0.65
o 0.89 and the NSE varied between 0.53 and 0.86 (Fig. 4). The
omparison of the simulated and observed water levels of study lakes
s presented in Fig S2. From the plot, despite the high KGE and NSE
alues of the model simulation, there are still some water level fluctua-
ions that were not captured and incorrect drawdown/refill completion
imings simulated by the model. The missing water level fluctuations
an be attributed to the potential errors from the weather input. For
xample, in Fig. 5A, the in-situ observations at Lake Wyola suggest

that there was a 2 ft water level rise before the 2017 spring refill.
However, the inflow rate that was simulated based on the Daymet
rainfall and temperature did not show a corresponding increase during
that period, resulting in the absence of such a rise in the water level
simulations. The misaligned drawdown/refill completion timings (see
6

s

Fig. 5B) may be due to limitations of the deterministic TSRB equa-
tion (Section 2.3.2) in accurately describing human operations, which
are inherently stochastic. For instance, the 2016 spring refill in Lake
Greenwater was paused at −0.8 ft for 28 days since Feb 25 that was
not captured by the model, resulting in the simulated refill completion
date was 1 month earlier than the actual date (See Fig. 5B). The model
determined the outflow rate in order to reach the target water level,
however, the actual release rate might be adjusted for other purposes
such as increasing downstream demand that cannot be accounted by
the deterministic model. To sum up, the deterministic HMF-Lake was
able to re-create historical water levels but was still subject to the
uncertainties from the meteorological inputs and the TSRB equations
(Section 2.3.2). Therefore, it is important to account these uncertainties
when applying the model to assess lakes’ ability to meet the state WD
guidelines.

3.3. Probability of completing drawndown by Dec 1

The probability to reach the target drawdown level by Dec 1 varied
across lakes (See Fig. 6, the exact probability were listed in Table S4).
Some lakes had relatively lower probability to meet the Dec 1 deadline,
such as Lake Greenwater where there was less than 5% possibility
to complete a 2 ft drawdown by Dec 1 for every simulated year. In
contrast, Lake Wyola and Lake Richmond had over 99% probability for
all designed drawdown levels (1 ft to 6 ft). In order to demonstrate
these differences across lakes, Fig. 7 shows time series of water level
and inflow/outflow for Lake Greenwater and Wyola during November
2015. In Fig. 7, the shaded area is the range of 5%–95% percentile.
From the water level plots (A1 and A2 in Fig. 7), the deepest level
the Lake Greenwater can reach by 12/01/2015 was around −2.1 ft
relative to the normal pool level), whereas Lake Wyola can achieve the
ecember 1 deadline for all selected drawdown levels. The outflows in
ake Greenwater (shaded area in B1, Fig. 7) for >2ft drawdowns have
lmost zero spread as they were mostly capped to 4 cfsm, which is the
aximum allowed release rate in the MA guidelines. In contrast, the

utflows in Lake Wyola (shaded area in B2, Fig. 7) were under 4 cfsm
llowing for reaching the target drawdown level. Lake Wyola also had
ower inflow (relative to 4 cfsm) than Lake Greenwater, which enabled
arger capacity to release extra storage.

In addition to the difference across study lakes, the ability to achieve
he December 1 drawdown also varied in different years. For most of
akes, the probabilities to meet the December 1 drawdown in 2017 were
enerally lower than 2015 and 2016 (See Fig. 6). One of the typical
xamples is that Lake Hamilton had over 99% probability to meet
he December 1 deadline for all designed drawdown levels in 2015–
016 and 2016–2017 but had <1% possibility to implement a >3 ft
rawdown in 2017–2018. The simulated water levels of Lake Hamilton
A1–A3, Fig. 8) also showed that it was able to reach 1–6 ft drawdown
evels by December 1 in the first two years, but the deepest drawdown
hat could be reached by Dec 1, 2017 was ∼4.4 ft. By comparing the
nflow between each year in Lake Hamilton (solid blue lines in B1–B3,
ig. 8), the inflow was averagely higher in 2017 (mean = 47.75 cfs)
han 2015 (mean = 21.59 cfs) and 2016 (mean = 24.37 cfs). In order to
each the target levels by December 1, Lake Hamilton needed to release
ore water in 2017 than in other two years. The simulated outflows

shaded area in B1–B3 Fig. 8) show that for drawdowns greater than 4
t, the simulated outflows had zero spread and were mostly capped to
cfsm through the entire November in 2017, but not in the other two

ears. Consequently, Lake Hamilton was able to reach >4 ft drawdowns
y December 1 in 2015 and 2016, but not in 2017.

.4. Latest refill starting dates for April 1 requirement

As later refill starting dates are beneficial in terms of vegetation
eduction, we evaluated the ability of successful refills by the latest

tarting date that ensures full refill with a 95% probability. Our results



Journal of Environmental Management 345 (2023) 118744X. He et al.

t
d
i
B
2

4

4

i
L

Fig. 3. Box plots of inflows to the study lakes from 2000 to 2020. 0.01𝑐𝑓𝑠 is added to zero inflows for better visualization.
Fig. 4. Model performance of historical water level simulations. The time series of simulated water levels in study lakes are presented in Figure S2.
show a deeper drawdown required an earlier timing to start the spring
refill, and the latest refill starting dates varied across different lakes
and years.(See Fig. 9, the exact dates were listed in Table S5). For most
of lakes, starting refills in March for all selected drawdown levels (up
to 6 ft) was feasible. For example, during Spring 2016, Lake Onota
and Wyola could begin refilling after Mar 7 at drawdowns of 6 ft
and still meet the April 1 requirement. Nonetheless, there were a few
exceptions either at higher drawdown levels (>5 ft) or for specific lakes.
For instance, Lake Boon would require starting the refill procedure in
January when drawdown was >3 ft. When examining different years,
here are some cases of significant differences between refill starting
ates for the same lake. Those can be attributed to the differences in
nflows from year to year. For example, refill starting dates for Lakes
rookhaven, Buel and Hamilton in 2017 were later than those in 2016,
018 coinciding with comparatively lower inflows (see Fig S8).

. Discussion

.1. Implications for WD management

Decisions for management of lake storage levels and outflow are
nfluenced by a number of factors and therefore, a tool such as HMF-
7

ake can help managers assess the efficacy of these decisions both
retrospectively and otherwise. This becomes important when consider-
ing contradicting constraints for lake water levels. By constraining the
release rate to the guidelines in our model, we provide managers with a
quantitative understanding of the lake’s ability to follow the guidelines
that can be used to guide management decisions. If the model consis-
tently yields low probabilities of being fully refilled by April 1 when
the lake starts refilling at March 1, the lake manager may consider
either a shallower drawdown magnitude or starting refill earlier than
March to ensure meeting the timing guidelines. Furthermore, given
that managers may want to keep drawdowns as long as possible to
increase the efficiency on invasive vegetation reduction (Carmignani
et al., 2021; Siver et al., 1986; Dugdale et al., 2012), the model can
also provide the latest refill starting dates that ensure (95% probability)
achieving the goal of refilling by April 1. Due to the interannual
weather variability, the latest refill start timing will vary across years.
Our model can be potentially used for long term simulation to provide
information about interannual variability in drawdown and refill tim-
ing with different drawdown magnitudes which helps individual lake
managers make climate-informed decisions toward optimizing their
management objectives (e.g., maximizing time the lake is drawn down)
while ensuring they meet regulatory guidelines.

In addition to assessing individual lakes, the model can also be
employed for statewide feasibility assessments. For example, based on
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Fig. 5. Example figures for showing the uncertainties of the historical water level simulations. The water levels are relativized to the normal pool level. Both measured (red) and
simulated (blue) water levels correspond to the left 𝑦-axis. Lake inflows (black) values correspond to the right 𝑦-axis. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 6. Heat maps of the probabilities for study lakes achieve drawdown guidelines in 2015, 2016, 2017. The 𝑥 axis represents the lake names, and 𝑦 axis represents different
drawdown magnitudes (1-6ft). The probabilities are colored with different colors and scaled from red (0.00) to blue (1.00). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Simulated water levels (A1 and A2) and inflow/outflow (B1 and B2) of Lake Greenwater and Lake Wyola in November, 2015 with the Massachusetts general winter
drawdown guidelines as operation rules. The water level simulations of other study lakes were documented in (Fig S5, S6 and S7). The shaded area represents the range between
5% and 95% percentile of the ensemble water levels or outflows. The area color indicates different designed drawdown levels. The blue solid lines in B1 and B2 represent median
values of the lake inflows. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Simulated water levels (A1, A2, A3) and inflow/outflow (B1, B2, B3) of the Lake Hamilton in each simulation year. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
many years of lake drawdown experience in Massachusetts, Wagner
(2020) found the maximum outflow limit (4 cfsm) does not allow many
lakes to achieve the target drawdown level (3 ft from the guidelines)
before Dec 1, especially for lakes with small drainage ratio (drainage
basin area : lake area < 10:1). As Fig. 6 shows, none of the lakes
with small drainage ratios (<10:1): Lake Boon, Goose, Garfield and
Otis achieved 3 ft drawdown. In contrast, the lakes that successfully
achieved a drawdown of 3 ft in one or more years, such as Lake
9

Brookhaven, Hamilton, Richmond, Wickboag, and Wyola, have signif-
icantly higher drainage ratios (>20:1) compared to the other lakes
(See Table 1). The state drawdown management agencies may want
to further validate the empirical knowledge for all drawdown lakes
statewide and consider adjusting the outflow limitation by taking the
drainage ratio into consideration. The model does not require any in-
situ water level or flow observations, but operates on inputs of drainage
basin characteristics, daily weather data, and bathymetry which can
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Fig. 9. Heat maps of the latest refill starting dates for study lakes in 2016, 2017, 2018. The 𝑥 axis represents the lake names, and 𝑦 axis represents different drawdown magnitudes
(1-6ft). The latest refill starting dates are colored with different colors and scaled from red (Jan 1) to blue (Mar 31). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
be acquired even in data-poor regions. Drainage basin characteristics
can be obtained from the global datasets of DEM (e.g., SRTM Van Zyl,
2001), land cover (e.g., MODIS Land Cover Friedl et al., 2002), and
soil types (e.g., Harmonized World Soil Database Fischer et al., 2008).
Regarding the daily weather data, there are numerous remotely sensed
weather data products, e.g., from the Geostationary Operational En-
vironmental Satellites (GOES)-R Series (Hu et al., 2020), that can be
utilized to obtain daily rainfall and temperature data for regions outside
the US. For bathymetry, GLOBathy estimated the bathymetry for over
1.4 million lakes in the world based on a GIS framework, although
different countries and states may have more accurate bathymetry data
(e.g., MA has bathymetry for over 300 ponds and lakes Division of
Fisheries and Wildlife, 2022). Nevertheless, the model was designed
based on small drainage lakes in a temperate zone and therefore, it
would need to be adjusted for different regions (further discussed in
Section 4.2).

Winter drawdown management strategies may need to be adapted
given the challenges from climate change (Palmer et al., 2008). For
instance, recent climate change studies have reported an increase in
temperature, an increase in rainfall in winters, and a timing shift of
spring rainfall events in the northeastern U.S. (Hayhoe et al., 2008;
Demaria et al., 2016). These changes may potentially result in an
increased difficulty to complete drawdowns and refills on time, partic-
ularly if in the presence of warmer temperatures managers favor longer
drawdown times waiting for freezing temperatures. In this context,
another application of HMF-Lake would be the assessment of the impact
of management decisions under different climate conditions. Daily
weather projections can be obtained from various General Circula-
tion Model (GCM) products, such as Coupled Model Intercomparison
Project (CMIP6) (O’Neill et al., 2016), Community Earth System Model
(CESM) (Danabasoglu et al., 2020) and the Commonwealth Scientific
and Industrial Research Organization (CSIRO) (Gordon et al., 2002).
Alternatively, climate stress tests could be used to assess the applica-
bility of any guidelines to changing climate. For example, by rescaling
historical rainfall intensity, the comparison between the probabilities
of April 1 refill under potential drier future climates, and past climate
conditions can elucidate how current guidelines are affected by rainfall
changes.
10
4.2. Model uncertainty and potential improvements

The current model shows a satisfactory performance in this study
(0.53 < NSE < 0.86). Hughes et al. (2021) also used a similar lake
hydrological model: SHETRAN-reservoir to simulate water levels in
human operated reservoirs and the NSEs ranged from 0.53 to 0.82
which had similar performance with our current model. To improve
the model performance, there are some uncertainties needed to address.
In this study, we used Daymet as the meteorological input to simulate
inflows and water levels. However, for gridded weather product such as
Daymet, the interpolation process of generating such spatial continuous
may cause underestimation of peak precipitation rate which further
result in low simulated peak streamflow (Bárdossy and Anwar, 2023).
In addition to the uncertainty of the meteorological input, the lumped
configuration of the Cemaneige-GR4J model that simulates inflows is
limited in terms of capturing the spatial variability of hydrological
processes. When that variability is large, spatially distributed mod-
els and semi-distributed models such as DHSVM (Zhao et al., 2016),
SWAT+ (Wu and Chen, 2012) and SHETRAN (Hughes et al., 2021)
could be better options. Nonetheless, distributed models usually require
additional inputs and longer computation times compared to lumped
models, with the latter time differences exacerbated when stochas-
tic simulations are required. Moreover, using distributed hydrological
models cannot guarantee a higher accuracy than lumped models due to
the more complex parameter space, especially when data availability
is limited and the basin is relatively homogeneous (Darbandsari and
Coulibaly, 2020; Carpenter and Georgakakos, 2006).

The Cemaneige-GR4J model also assumes no human regulation
(reservoirs, irrigation etc.) upstream of the modeled watershed, poten-
tially affecting the simulated lake inflow. Although some hydrological
models such as SWAT+ can include upstream human operations such as
irrigation, obtaining full operation records of the upstream watershed is
challenging due to limited access to such information (Cui et al., 2018;
Pathiraja et al., 2018). Data-driven models, including machine and
deep learning algorithms, might be a potential alternative because they
can infer rainfall-runoff relationships directly from observations rather
than prescribed model structures (Schmidt et al., 2020). Therefore, if

the training dataset is large enough, data-driven models could learn the
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impact of upstream human regulation and provide more accurate in-
flow estimations compared to process-based models (Swain and Patra,
2017; Feng et al., 2022; Shortridge et al., 2016; Wi and Steinschneider,
2022).

5. Conclusion

The stochastic HMF-Lake can account the spatial heterogeneity of
the watershed characteristics and also annual variability of the pre-
cipitation & temperature, which allow us to calculate the site- and
year-specific probability of December 1 drawdown and latest refill
starting date, which ensure over 95% probability to achieve Apr 1 refill.
These results can provide quantitative references of the ability of study
lakes to follow the guidelines. Since the model does not require any in-
itu real time observations such as streamflow or water levels, it could
e potentially applied for any winter drawdown lake in the world. For
tate or regional winter drawdown managers (e.g., Massachusetts), the
odel could be applied in all managed lakes in the state to evaluate

he applicability of the general guidelines. Furthermore, given the
hallenges from potential future climate changes, such as more frequent
pring droughts, our model could be employed to evaluate how these
limate changes could impact drawdown management and provide
uidance for future winter drawdown management adaptations.
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